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Coefficients thermoélastiques N°0011 
 

1-) Nommons ces coefficients et précisons leurs caractères extensif ou intensif. 

 

Les 3 coefficients thermoélastiques : 𝛼,   𝛽  𝑒𝑡 𝜒𝑇 sont de caractère intensif. 𝛼 est 

homogène à l’inverse d’une température, c’est le coefficient de dilatation isobare ; 𝛽 est 

homogène à l’inverse d’une température, c’est le coefficient d’augmentation de pression 

isochore ; 𝜒𝑇 est homogène à l’inverse d’une pression, c’est le coefficient de 

compressibilité isotherme. 

 

2-) Déterminons ces 3 coefficients pour un gaz parfait : PV = nRT  
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3-) Déterminer ces 3 coefficients pour un gaz réel: (𝑷 +
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𝑽𝟐) (𝑽 − 𝒃) = 𝑹𝑻 

 

 Calcul de α, pour cela dérivons l’équation ci-dessus à P constant et par rapport à T : 
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 Calcul de 𝜷, pour cela dérivons l’équation ci-dessus à V constant et par rapport à T : 
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 Calcul de 𝝌𝑻, pour cela dérivons l’équation ci-dessus à T constant et par rapport à 

P : 
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4-) Montrons que la relation liant les coefficients thermoélastiques peut pour un gaz parfait, se 

mettre sous la forme : 𝛼 = 𝑃𝛽𝜒𝑇 

 

Démonstration très facile, on part des résultats de la question 2 : 
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