0158-4ACh3. Efficacité ou rendement d’une machine a vapeur utilisée dans une centrale électrique

Les machines à vapeur sont utilisées dans les centrales électriques.  Ce sont des moteurs à combustion externe, qui transforment l’énergie thermique de la vapeur d’eau dégagée par le réacteur en énergie mécanique. Cette dernière est convertie en énergie électrique au moyen d’un alternateur. Une machine à vapeur comporte en général 4 organes (voir Figure ci-dessous) qui, … Lire la suite 0158-4ACh3. Efficacité ou rendement d’une machine a vapeur utilisée dans une centrale électrique

0157-4ACh3. Générateur de vapeur à récupération de chaleur combiné à une turbine

Un procédé industriel rejette des gaz issus des produits de combustion à la température T1 = 478 K, à la pression P1 = 1 bar et avec un débit massique de D1 = 69.78 kg/s. Comme illustré sur la figure, il est proposé d’utiliser ces produits de combustion dans un générateur de vapeur à récupération … Lire la suite 0157-4ACh3. Générateur de vapeur à récupération de chaleur combiné à une turbine

0154-4ACh3. Poussée délivrée au décollage par le lanceur Ariane 5

Note Culturelle : Le moteur Vulcain assure la propulsion de l’étage principal des lanceurs Ariane. La réaction exothermique du dihydrogène et du dioxygène, dans une chambre de combustion, produit de la vapeur d’eau à hautes température et pression qui s’évacue à grande vitesse à travers une tuyère (voir Figure 1). C’est l’éjection de ce gaz … Lire la suite 0154-4ACh3. Poussée délivrée au décollage par le lanceur Ariane 5

0141-4ACh4. Évolution coefficient d’échange global fonction de l’encrassement

Un échangeur de chaleur à contre-courant est utilisé pour chauffer un débit massique Qmeau (Fluide 2) de T2e à T2s, en refroidissant une huile moteur (Fluide 1) de T1e à T1s (voir Figure 1). On note h1 la conductance de transfert de l’huile ; Qmhuile et Cp1, respectivement le débit massique de l’huile et sa … Lire la suite 0141-4ACh4. Évolution coefficient d’échange global fonction de l’encrassement

0140-4ACh4. Étude comparative d’échangeurs co/contre-courant

On considère un échangeur simple constitué de deux tubes rectilignes et concentriques de longueur L (voir figure ci-dessous). Le tube extérieur (tube 1) de rayon R1, est constitué d’un matériau supposé isolant thermique parfait. Le tube intérieur (tube 2), parcouru par le fluide froid, a un rayon R2 (R1 > R2). L’espace annulaire compris entre … Lire la suite 0140-4ACh4. Étude comparative d’échangeurs co/contre-courant

0139-4ACh4. Refroidissement du micro-processeur d’un ordinateur

Pour refroidir le microprocesseur d'un ordinateur qui génère une puissance thermique d'environ 200 W, on dispose un radiateur contre ce microprocesseur (voir figure ci-dessous). La taille du ventilateur impose les conditions d'écoulement de l'air de refroidissement conduisant à un coefficient d'échange global de 40 W.m-2.K-1, pour un débit d'air de 50 m3.h-1 (Cp = 1006 … Lire la suite 0139-4ACh4. Refroidissement du micro-processeur d’un ordinateur

0138-4ACh4. Flux thermique traversant l’échangeur d’une Laiterie

Dans une Laiterie, on entrepose dans un Tank (voir figure ci-dessous), du lait à la température corporelle de la vache 38,6 °C. On doit rapidement refroidir ce lait à une température de conservation de 13°C ou moins. L’installation permet de traiter 0,250 m3/h. Pour ce faire, on dispose d’eau froide à la sortie d'un ballon … Lire la suite 0138-4ACh4. Flux thermique traversant l’échangeur d’une Laiterie

0137-4ACh4. Rendement de conversion d’un matériau Thermochimique

La chaudière d'une centrale à vapeur fonctionnant sur un cycle de Rankine surchauffé (voir figure ci-dessous) est alimentée en continu, par un débit B = 2 t/h d’un déchet, de pouvoir calorifique inférieur PCI = 3800 kcal/kg    (1 kcal = 4,185 kJ). Fig.: Cycle de Rankine d'une Centrale à Vapeur surchauffée 1°) Calculer la puissance … Lire la suite 0137-4ACh4. Rendement de conversion d’un matériau Thermochimique

0136-4ACh4. Refroidissement d’air dans un échangeur bitube

Pour refroidir un débit de 9,4 kg/h d'air de 616 °C à 178 °C, on le fait passer dans le tube central d'un échangeur bitube à contre-courant de 1,5 m de long, 2 cm de diamètre et de très faible épaisseur (voir figure ci-dessous). 1-) Calculer la puissance calorifique à évacuer. On donne pour l'air … Lire la suite 0136-4ACh4. Refroidissement d’air dans un échangeur bitube

0135-4ACh4. Puissance thermique d’un échangeur contre-courant

Cette application illustre une des limites de la méthode du DTLM, le calcul est obligatoirement itératif. Déterminer la puissance de l'échangeur contre-courant suivant : → Tce = 110°C ; Tcs = ? ; Qmc = 5000 kg.h-1 ; → Tfe = 10°C ; Tfs = ? ; Qmf = 12000 kg.h-1 ; → Cpc = … Lire la suite 0135-4ACh4. Puissance thermique d’un échangeur contre-courant